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The velocity and remaining ablator mass of an imploding capsule are critical metrics

for assessing the progress towards ignition of an inertially confined fusion experiment.

These and other ablator rocket parameters have been measured using a single streaked

x-ray radiograph. A regularization technique has been used to determine the ablator

density profile, ρ(r), at each time step; moments of ρ(r) then provide the areal density,

average radius, and mass of the unablated, or remaining, ablator material, with the

velocity determined from the time derivative of the average radius. The technique

has been implemented on experiments at the OMEGA laser facility.
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b)Author to whom correspondence should be addressed. Electronic mail: hicks13@llnl.gov.

1



I. INTRODUCTION

The experimental plan for achieving indirectly-driven ignition at the National Ignition

Facility1 (NIF) requires the measurement and tuning of several key metrics each of which

characterize different aspects of the implosion2. These metrics include the x-ray conversion

efficiency, implosion symmetry, fuel adiabat, and fuel velocity. High fuel velocities are re-

quired to deliver compressive energy to the hot spot faster than it is lost via conduction

or radiation and is one of the most important figures-of-merit in Inertial Confinement Fu-

sion. Calculations show that the ignition threshold scales as the inverse sixth power of the

velocity3–5.

Achieving a high fuel velocity involves a balance between two competing requirements6:

(1) Burning off most of the ablator mass to minimize the rocket payload, and (2) Preserving

sufficient ablator mass to keep ablator-fuel interface instabilities and fuel pre-heat effects

low. The maximum velocity desired is that which can be achieved with sufficiently low

mix and pre-heat of the fuel. For typical indirectly-driven NIF ignition targets, radiation-

hydrodynamic simulations have established that the optimal peak velocity is in the range

350-380 µm/ns while the remaining mass of the ablator is 5-15% of the initial ablator

mass. The precise values depend sensitively upon the mix and transport models used in the

simulations as well as on specifics of the target and laser drive.

For a given laser drive and target configuration, whether or not the desired velocity

and mass are achieved depends on the integrated details of the entire ablation process

including the flux and spectrum of x rays produced in the hohlraum, radiation transport

to the ablation surface, and the spectral opacities of the ablator before and after blow-off,

where conditions throughout may or may not be in local thermodynamic equilibrium (LTE).

Since it is impossible to guarantee that all these processes can be calculated a priori to the

accuracy necessary to achieve ignition the most practical approach is to directly measure

both the velocity and mass of the ablator. These observables can then be experimentally

tuned by adjusting the initial thickness of the ablator and the power in the peak of the drive

to iteratively converge upon the desired conditions5,6. Nominally the velocity needs to be

measured to ∼ ±2% while the remaining mass needs to be measured to ∼ ±1.5% of the

initial mass. Up until now, however, it has been challenging to measure the capsule velocity

and impossible to measure the ablator mass.
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Streaked x-ray radiography has long been applied to ICF experiments7 but the wealth

of information encoded in this simple record has yet to be fully extracted. It is well known

that the inverse Abel transform of a radiograph through a spherically-symmetric target can

be used to extract the density profile, ρ(r), of the capsule ablator8,9. Knowing this 1-D field

quantity at various times (ρ(r, t)) then allows multiple 0-D or average ablator parameters

to be calculated from radial moments of ρ(r, t). These 0-D quantities are valuable figures-

of-merit assessing the performance of an ICF implosion.

II. AVERAGE ABLATOR QUANTITIES AS MOMENTS OF ρ(r)

Several important ablator quantities are defined in terms of moments of ρ(r). In particular

the areal density, ⟨ρR⟩, is given by the zeroth moment, the average radius, ⟨R⟩, by the ratio

of the first and zeroth moments, and the mass, M , by the second moment:

⟨ρR⟩ =
∫ a

ρ(r) dr (1)

⟨R⟩ =
∫ a rρ(r) dr

⟨ρR⟩
(2)

M = 4π
∫ a

r2ρ(r) dr (3)

= 4π⟨ρR⟩⟨R2⟩ (4)

where ⟨R2⟩ =
∫ a r2ρ(r) dr/⟨ρR⟩. Here the lower limit of the integrals is the inner radius of

the ablator (or r = 0 if there is no fuel) and the upper limit, a, is the position of the ablation

front.

Rather than using ⟨R⟩ as defined above it is often useful to define the center of mass:

⟨Rm⟩ =
∫
rρ(r)r2 dr∫
ρ(r)r2 dr

(5)

Simulations show that ⟨Rm⟩ ≃ ⟨R⟩ over most of the implosion trajectory but that the time

derivative of ⟨Rm⟩ is better behaved near stagnation.

The mass can more usefully be expressed as:

M = 4π⟨ρR⟩
(
⟨R⟩2 + ⟨σ2⟩

)
(6)

since the variance is ⟨σ2⟩ = ⟨R2⟩ − ⟨R⟩2. For the acceleration phase of an implosion it is

usually true that ⟨σ2⟩ ≪ ⟨R⟩2 in which case ⟨ρR⟩ and M are directly related, regardless of

the shell thickness, for a fixed ⟨R⟩.
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Since the goal of this measurement is to determine M(t) and ⟨R(t)⟩ (and thus the average

velocity ⟨U(t)⟩ = d⟨R⟩/dt), details of ρ(r) are important only insofar as they affect its first

three moments. Thus fine scale structure in ρ(r) is unimportant to the extent that it does

not significantly affect these moments. This relaxes the requirement on spatial resolution for

the diagnostic and is in part why the regularization approach described in Section IV using

smoothed density profiles is successful. Determining ρ(r, t) accurately is more challenging

from an instrument requirement perspective than is determining its first few moments.

III. THE INVERSE ABEL TRANSFORM METHOD AND ITS

LIMITATIONS

For spherically-symmetric objects the inverse problem of tomography reduces to finding

solutions of the Abel transform. In this section the well-known formulae of absorption

radiography and the Abel transform are summarized and used to illustrate how the particular

challenges faced in an ICF experiment make this classic problem ill-posed. This makes an

explicit solution via the inverse Abel transform impossible without additional information.

For standard absorption contrast radiography the observed x-ray intensity, I(y), along a

measured dimension, y, where y = 0 corresponds to the center of the object with spherical

symmetry, is given by:

I(y)/I0(y) = exp[−τ(y)] (7)

where I0(y) is the initial x-ray intensity and τ(y) is the optical depth along the line of sight.

The inverse Abel transform relates this projected optical depth to the product of the

object’s opacity profile at the backlighter photon energy, κν(r), and density profile, ρ(r),

where both, in general, are functions of radius:

κν(r)ρ(r) = − 1

π

∫ ∞

r

dτ(y)

dy

dy√
y2 − r2

(8)

Thus a measurement of τ(y) allows ρ(r) to be determined explicitly provided that κν(r) is

known.

In a typical streaked radiography experiment of an imploding capsule it is difficult to

extract ρ(r) explicitly in this fashion because there are too many unknowns. Firstly, I0(y)

in Eq. 7 is unknown. For area backlighting the spatial and temporal variations in this

illumination profile cannot be ignored and are difficult to measure independently. Also, for
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indirectly-driven NIF capsules there is sufficient ablated plasma to further alter the effective

I0(y). Secondly, a radially inhomogeneous ablator means that κν(r) is unknown. NIF

capsule designs use a graded ablator dopant which causes κν(r) in Eq. 8 to vary throughout

the implosion. An additional challenge is that implosion radiographs are particularly noisy

because of photon statistics, backgrounds, and camera noise. Regardless of the numerical

technique used10 the ill-conditioned inverse Abel transform amplifies noise.

These three problems have been solved by avoiding the inverse Abel transform and using

the forward Abel transform to iterate over guesses in ρ(r). This allows a priori constraints

to be applied to the form of ρ(r) and I0(y) finding the optimal solution for both (Section IV)

and mitigating the noise problem. For each guess in ρ(r), κν(r) can then be converted from

Lagrangian space where for the unablated region it remains constant (Section V).

IV. A REGULARIZATION APPROACH TO FINDING ρ(r)

A. A priori constraints

Regularization is a technique used to solve ill-posed or ill-conditioned problems by in-

troducing additional information as constraints11. These constraints reduce the number of

unknowns (useful for ill-posed problems) and penalize complexity (useful for ill-conditioned

problems). Such a priori constraints, or Bayesian priors, are most valuable when derived

from specific knowledge of the problem. The simplest example of regularization is least

squares curve-fitting.

Here, for the case of an implosion radiograph, the choice of constraints attempts to

capture how the eye instinctively identifies the capsule limb: The capsule limb is a unique,

strongly-localized feature in an otherwise smoothly-varying background. To quantify this

distinction between spatial variations caused by capsule absorption and spatial variations

caused by backlighter non-uniformities the following a priori constraints on ρ(r) and I0(y)

are invoked:

A: That the capsule density profile has compact support. Specifically ρ(r) = 0 for r < rmin

and r > rmax where rmin > 0 and rmax is less than the maximum radius recorded in the

radiograph. Note this is not a thin shell approximation: the shell need not be thin, it

just needs to be a shell. During the acceleration phase of the implosion this should be
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the case. For simplicity ρ(r) should also be smooth, i.e. the density profile is a bump

function.

B: That the backlighter intensity profile varies over a spatial scale that is larger than the

shell thickness. Experimentally this is satisfied by using a large enough backlighter

laser focal spot diameter or by suitably overlapping smaller spots.

Importantly, these constraints also remove the effect of unknown attenuation by ablator

blow-off. Such absorption is significant in NIF capsules because of the large amount of

ablator mass removed, the presence of a mid-Z dopant, and the fact that at high implosion

velocities material continues to converge immediately after ablation. As long as the scale

length of this ablated material (> 200 µm) is larger than that of the limb (∼ 20 µm) the

above assumptions automatically include this additional x-ray attenuation as part of the

spatial variation of the backlighter. The ablated material is eliminated from the accounting

by deriving an effective I0(y) appropriate for characterizing the unablated material only.

Thus the fundamental distinction made between the unablated and ablated material is one

of scale length.

The current incarnation of this regularization procedure uses curve fits to constrain the

form of ρ(r) and I0(y). Functional forms for ρ(r) that have been tested include a rectangular

profile and Gaussian profiles with various degrees of skew. For I0(y) polynomials of order

2 to 6 have been tested. As will be described below, the solution is quite insensitive to the

choice of these functional forms as long as they obey the two criteria above. This suggests

there exists a more generalized mathematical approach to solving this problem than the one

reported here.

B. Analysis procedure

Having set these a priori constraints by choosing the functional forms for ρ(r) and I0(y)

the following iterative procedure is used to find ρ(r) at a single time step.

1. Guess the three parameters which fully describe the ρ(r) bump function. For a Gaus-

sian these correspond to the average position, the peak density, and the width.

2. For this ρ(r) determine the opacity profile, κν(r), by converting from its value in

Lagrangian space at t = 0. This step will be described in Section VB.
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FIG. 1. Schematic (not to scale) of the OMEGA experimental setup. The Vanadium foil is glued

on to the slot on the backlighter side of the hohlraum. A matching slot on the opposite side of

the hohlraum allows x rays to propagate through the imaging slit to the x-ray streak camera. The

imaging slit is positioned to magnify the image by a factor of 20.

3. With this κν(r)ρ(r) profile perform the forward Abel transform to determine the op-

tical depth, τ(y), of the object.

4. Convolve exp(−τ(y)) with the necessary instrument broadening and then recover the

‘broadened’ τ(y). Being able to do this is another advantage to performing the forward

transform rather than its inverse.

5. Combine this instrument broadened τ(y) with the measured profile I(y) to determine

the effective backlighter profile using ln I0(y) = ln I(y) + τ(y) (from a re-arrangement

of Eq. 7).

6. Fit this effective backlighter distribution, I0(y), to a smooth profile, e.g. a polynomial

of order 2, 3, or 4. Return to (1) and repeat this loop to minimize the χ2 on this fit.

The result is the ρ(r) which is most consistent with a smoothly varying background

profile.

This procedure converges on ρ(r) usually in a few iterations. The input parameters for

ρ(r) are then used to start the iteration afresh for next time step. In this way only one set

of initial guesses need be provided to analyze an entire streaked radiograph.

V. OPACITY OF THE UNABLATED MASS

A single radiography measurement on its own has only enough information to determine

the density-opacity product, κν(r)ρ(r), as given in Eq. 8. Finding ρ(r) itself requires inde-

7



pendent information about κν(r). This is a particularly important issue for capsules with a

graded dopant profile12 where the remaining opacity of the shell changes as various material

layers get ablated. Here we show how κν(r) can be determined directly from the opacity

profile in Lagrangian space using the assumption that mass is ablated from outer regions of

the capsule first.

A. Validity of cold opacities

Use of cold opacities simplifies the analysis considerably since this makes κν independent

of temperature and density. LTE opacity calculations at photon energies of 6-10 keV show

that in local thermodynamic equilibrium cold opacities are valid in beryllium, carbon, cop-

per, and germanium for temperatures below 50 eV, 90 eV, 150 eV, and 300 eV respectively.

These thresholds increase with density. Since temperatures in the unablated portions of the

NIF capsule are expected to stay below 60 eV during the acceleration phase cold opacities

are generally a good approximation.

Upon ablation opacities drop significantly due to ionization of the K-shell (in the case of

beryllium and carbon) or the L-shell (in the case of copper and germanium). This provides a

natural distinction between the ablated and unablated region since x-ray absorption occurs

primarily in the unablated material. While this is a convenient feature for a diagnostic

designed to detect only the unablated shell it is actually the scale length of the limb, as

described in Section IVA, that distinguishes unablated from ablated material.

B. Determining κν(r) by a transformation from Lagrangian space

The heterogeneous ablator complicates the analysis since the opacity profile κν(r) is

constantly changing as material is ablated. Determining κν(r) at each time step can still be

done however by recognizing that the opacity profile for the unablated shell is time invariant

in Lagrangian space. The guess for ρ(r) made at the start of each iteration (Section IVB)

provides the necessary transformation between Eulerian radial positions (r) and Lagrangian

mass elements (m). Then, given that κν(m) for the unablated shell is known (see previous

section) and time-invariant, κν(r) can be calculated for the assumed ρ(r). Any given ρ(r)

is associated with a specific κν(r) - the two are not independent. This shows the advantage
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FIG. 2. A sample x-ray streak image of an imploding capsule from OMEGA showing the entire

time history of the implosion from shock compression to shell acceleration to stagnation at 3.3 ns.

The timing fiducials are visible at early times.

of performing the forward Abel transform and iterating about assumed forms of ρ(r) rather

than attempting the inverse calculation.

This technique is rigorous in that it assigns the appropriate κν to each mass element in

ρ(r). An approximation that is computationally more efficient and has essentially identical

results is to assume that the opacity of the remaining mass is constant across the entire

density profile and equal to the average opacity of the unablated mass. This average opacity

is given by

κν(M) =

∫ a
0 κν(m)dm∫ a

0 dm
=

∫ a
0 κν(r)ρ(r)r

2dr∫ a
0 ρ(r)r2dr

(9)

This approximation works because details of the opacity distribution are higher order effects

that have little effect on the first few moments of κν(r)ρ(r).

VI. EXPERIMENTAL TEST

A. Experimental set-up

A scaled test of this technique was performed at the OMEGA laser facility, a neodymium-

doped phosphate glass system operating with frequency-tripled, 0.35 µm light13. Indirectly-

driven implosions were probed using area backlit x-ray streaked radiography with 5.2 keV
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FIG. 3. Average ablator radius, velocity, ρR, and remaining mass fraction versus time (black

diamonds) extracted from the streak in Fig. 2. Data are binned in time allowing average values

and statistical errors to be determined (red points with error bars). These points are connected by

smoothing splines (solid red lines). Dashed green lines show post-shot Lasnex simulations.

x rays from Vanadium He-α fluorescence. A schematic of the experimental setup is shown

in Fig. 1.

Copper-doped beryllium capsules with no gas fill were used. The ablators had an inner

diameter of 215 µm and were composed of an inner layer of 4 µm pure Be, a 26 µm middle

layer of beryllium doped with 3.0 atomic percent of Cu, and an outer layer of either 6 or

21 µm thick pure Be. Dopant concentrations were chosen so that the optical depths would

be comparable to those expected when backlighting NIF capsules using higher backlighter

energies.

Each capsule was held inside a hohlraum composed of 25 µm thick Au. Hohlraums were

1.6 mm in diameter and 2.5 mm long with a 1.2 mm diameter laser entrance hole (LEH) at
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each end. No hohlraum gas fill was used. The axis of rotation of the hohlraum was aligned

along the P6-P7 axis of the OMEGA target chamber. For radiography access two narrow

slots were made on either side of the hohlraum aligned parallel to the hohlraum axis. The

slot on the backlighter side (H7) was 1000 µm long and 300 µm high while that on the

streak camera side (H14) was 1000 µm long and 100 µm high. The H7 slot was covered

by a 5 µm thick V backlighter foil while the H14 slot was covered with a 50 µm thick CH

foil to prevent closure of the slot during laser ablation of the hohlraum. Slots were offset in

opposite directions from hohlraum center to account for the radiography axis (H7-H14) being

10.8◦ off-perpendicular from the hohlraum axis. Calibration shots were taken on hohlraums

without capsules to measure the backlighter spatial profile and, in conjunction with a grid

on the H14 slot, to experimentally measure the magnification.

A total of 40 beams were used to heat the hohlraum. The 20 beams illuminating each

LEH were incident at 29◦ (5 beams), 42◦ (5 beams), and 59◦ (10 beams) to the hohlraum axis.

A shaped laser pulse approximately 2.7 ns in duration was used. Due to facility constraints

the same laser pulse shape was used for the backlighter pulses. Maximum available energies

of ∼ 320 J/beam were used on all shots. Eight backlighter beams were used to illuminate

the central ∼800 µm field of view of the hohlraum slots. Beams were tiled in space and

staggered in time to optimize the x-ray emission brightness and uniformity in both space

and time.

The primary diagnostic was the SSC-A x-ray streak camera14 run with a Au photocath-

ode. The camera sweep speed was set to capture a sweep window of ∼ 4 ns, giving a time

resolution of ∼ 40 ps. A UV timing comb was used on each streak record to measure the

sweep speed and provide and absolute timing reference. The multi-channel soft x-ray diag-

nostic Dante15 was run to capture the time history of the hohlraum x-ray emission and thus

radiation temperature.

B. Results

X-ray streaked radiographic images were obtained on shots under similar drive conditions

using targets with either 36 µm or 51 µm thick ablators. A sample streak is given in Fig. 2

for a capsule with a 36 µm thick ablator. The measured hohlraum radiation temperature

reached a peak of 200 eV.
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The inferred ⟨R(t)⟩, ⟨U(t)⟩, ρR(t), and M(t) are shown in Fig. 3. Each black diamond

represents the result from the regularization analysis at a single time step. To estimate

statistical errors, data points from several adjacent time steps are grouped together into a

single bin with the average and standard deviation reported in red with error bars. Average

velocities are found by taking a linear fit versus time of the data points within a single bin.

Also shown are the results from post-shot two-dimensional Lasnex simulations incorporating

the measured laser power for each beam. These calculations are in good agreement with the

data.

VII. CONCLUSION

An x-ray streaked radiography technique to measure the time-resolved radius, velocity,

ρR, and mass of imploding capsules has been developed as part of the effort to achieve

ignition at the NIF. ρ(r) is extracted from the x-ray transmission profile at each time step

with the integrated quantities - ρR, radius, and mass - then being determined from the first

three moments in ρ(r).

Regularization is used to address the ill-posed problem of having an unknown backlighter

intensity profile, I0(y). The solution is found to be that which optimally satisfies the a

priori constraints that ρ(r) is localized in radius space and I0(y) is smooth and delocalized

in image space. This approach of using the different scale lengths to distinguish shell ab-

sorption variations from backlighter variations is how the human eye instinctively identifies

the capsule limb in an implosion radiograph.

Tests of this technique in OMEGA experiments showed great promise. Also promising

were numerical tests of this technique on simulated NIF radiographs. These will be described

in a separate publication.
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